ICCV 2023
Papers
ICCV 2023이 열리고 있다. NeRF, Multimodal/VQA, Model Compression 위주로 트래킹한다.
(일부 특이한 연구도 포함)
Neural Radiance Fields
NeRF-MS: Neural Radiance Fields with Multi-Sequence
Peihao Li et al.Re-ReND: Real-time Rendering of NeRFs across Devices
Sara Rojas et al.CLNeRF: Continual Learning Meets NeRF
Zhipeng Cai, Matthias MullerSingle-Stage Diffusion NeRF: A Unified Approach to 3D Generation and Reconstruction
Hansheng Chen et al.SceneRF: Self-Supervised Monocular 3D Scene Reconstruction with Radiance Fields
Anh-Quan Cao, Raoul de CharetteNerfAcc: Efficient Sampling Accelerates NeRFs
Ruilong Li et al.FeatureNeRF: Learning Generalizable NeRFs by Distilling Foundation Models
Jianglong Ye, Naiyan Wang, Xiaolong WangScatterNeRF: Seeing Through Fog with Physically-Based Inverse Neural Rendering
Andrea Ramazzina et al.MonoNeRF: Learning a Generalizable Dynamic Radiance Field from Monocular Videos
Fengrui Tian, Shaoyi Du, Yueqi Duan
Multimodal && VQA
DIME-FM : DIstilling Multimodal and Efficient Foundation Models
Ximeng Sun et al.VQA-GNN: Reasoning with Multimodal Knowledge via Graph Neural Networks for Visual Question Answering
Yanan Wang et al.Localizing Moments in Long Video Via Multimodal Guidance
Wayner Barrios et al.Decouple Before Interact: Multi-Modal Prompt Learning for Continual Visual Question Answering
Zi Qian et al.Discovering Spatio-Temporal Rationales for Video Question Answering
Yicong Li et al.Open-Vocabulary Video Question Answering: A New Benchmark for Evaluating the Generalizability of Video Question Answering Models
Dogwab Ko et al.Variational Causal Inference Network for Explanatory Visual Question Answering
Dizhan Xue et al.Toward Unsupervised Realistic Visual Question Answering
Yuwei Zhang et al.VQA-GNN: Reasoning with Multimodal Knowledge via Graph Neural Networks for Visual Question Answering
Yanan Wang et al.
Quantization
Jumping through Local Minima: Quantization in the Loss Landscape of Vision Transformers
Natalia Frumkin, Dibakar Gope, Diana MarculescuEMQ: Evolving Training-free Proxies for Automated Mixed Precision Quantization
Peijie Dong et al.DenseShift: Towards Accurate and Efficient Low-Bit Power-of-Two Quantization
Xinlin Li et al.ResQ: Residual Quantization for Video Perception
Davide Abati et al.I-ViT: Integer-only Quantization for Efficient Vision Transformer Inference
Zhikai Li, Qingyi GuRepQ-ViT: Scale Reparameterization for Post-Training Quantization of Vision Transformers
Zhikai Li et al.Unified Data-Free Compression: Pruning and Quantization without Fine-TuningTeachers
Shipeng Bai et al.A2Q: Accumulator-Aware Quantization with Guaranteed Overflow Avoidance
Ian Colbert et al.
Distillation
TinyCLIP: CLIP Distillation via Affinity Mimicking and Weight Inheritance
Kan Wu et al.DOT: A Distillation-Oriented Trainer
Borui Zhao et al.From Knowledge Distillation to Self-Knowledge Distillation: A Unified Approach with Normalized Loss and Customized Soft Labels
Zhendong Yang et al.Cumulative Spatial Knowledge Distillation for Vision Transformers
Borui Zhao et al.Multi-Label Knowledge Distillation
Penghui Yang et al.
Etc
Dataset Quantization
Daquan Zhou, Kai Wang, Jianyang Gu, Xiangyu Peng, Dongze Lian, Yifan Zhang, Yang You, Jiashi FengDREAM: Efficient Dataset Distillation by Representative Matching
Yanqing Liu, Jianyang Gu, Kai Wang, Zheng Zhu, Wei Jiang, Yang YouDataDAM: Efficient Dataset Distillation with Attention Matching
Ahmad Sajedi et al.